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Abstract

Muscle activity at the arm are responsible for enabling many human tasks. Motion data related to the
muscles not only can help in the rehabilitation progress of injured people, but also can be used for pattern
recognition in a computer input device. We developed a wearable device using force-sensing resistors
for detecting the inflation of different muscle groups at the forearm and upper arm. The device was
fabricated using two elastic straps with a wireless module to allow the performance of mobile activities.
By capturing the pressure generated at the muscle belly, the sensing straps were used as a human interface
device for controlling the computer keyboard and mouse cursor. In addition, we implemented a neural
network for recognizing the patterns produced by multiple arm and hand gestures. Finally, force-sensing
resistor shows promising application since they are unobtrusive, lightweight and has fast response.

1 Introduction

Most human daily activities are associated with arm movement. From grabbing and turning the car key to
texting a message on a cellphone, a variety of actions involving fingers and wrist motion are performed instan-
taneously to our eyes. Different group muscles at the arm are activated through the nerve-muscle connection
when command signals from the brain are transmitted in order to execute a certain task. Commercially
available devices can capture these bio-signals by using a technique called electromyography (EMG). In this
procedure, electrodes are attached to the skin surface for measuring the electric potential (voltage) generated
by the muscle cells.

Physiological data acquisition is an important feature for monitoring the progress and body performance
of people in rehabilitation process. Unobtrusive sensing mechanisms contribute to no contamination while
providing a fast reuse. A glove for sensing finger motion (MusicGlove, Flint [1]) can help patients with
neurological conditions such as stroke and cerebral palsy, to improve their hand function while playing a
therapy-oriented music game. Researchers have developed a force myography (FMG) device for extracting
signals of the upper-extremities and classify the movements related to a drinking task[2] . Other researchers
also investigated the use o force-sensing resistors (FSRs) for capturing the pressure applied by the muscles
at the forearm [4] [5], and at the leg for cycling activity [6]. However, those system do not provide any type
of wireless communication, preventing it to be implemented for activities that requires mobility.

The interaction between human and machine is becoming, by each generation, more and more close. All
this progress occurs due to the several needs that emerges when technology evolves, which can be considered
but are not limited to: fast response, mobility, compactness, accessibility. New devices are being developed
in order to provide advanced interface methods. An armband device (Myo, Thalmic Labs [3]) introduce a
new concept of which could replace the usual method of controlling computers. By using EMG sensors and
highly sensitive nine-axis IMU, the device is able to capture hand gestures and communicate with computers
and mobiles via Bluetooth. Another work investigates the use of an electroencephalography (EEG) device
for controlling the mouse cursor through facial expressions, allowing paralyzed people to have easy control
of a computer [7].

∗This work is done under Prof Xiaobo Tan as a course project of ECE819 (Smart Materials Sensors and Actuators) at
Michigan State University
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Force sensing resistor (FSR) is a material whose resistance changes when a force or pressure is applied. It
is also known as Force-sensitive-resistor. In this present work, we investigate the use of FSRs in a wearable
and flexible device for sensing muscle pressure at the forearm and upper arm, enabling the recognition
of gestures related to arm, hand and wrist movement. We implemented it as human interface device for
computer applications, allowing the control of the keyboard input and mouse cursor. Furthermore, by using
a neural network platform, it was possible to identify the muscles associated with multiple activities.

2 Selection of Sensors

Initially we wanted to make a device, which can capture immediate muscle movements. Initially we thought
of using standard piezo-extension-sensors from piezo.com. We thought of measuring the contraction and
relaxation muscles by attaching the PZT strip with a band. This way if the muscle expands, the overall
circumference would increase and hence the length of PZT strip will increase. However the cost of cheapest
PZT strip was more than 100$. We thought of looking for other cheap smart materials sensors. We found
two sensors: Force Sensitive Resistor (FSR) and PVDF (Polyvinylidene fluoride) vibration sensor, both of
which costs less then 10$.

A PVDF vibration sensor (figure 1) has a flexible piezo polymer film made by Measurement SpecialitiesTM,
which works on the bending principle of piezoelectric film. It has an inertial mass attach to the tip of it,
which helps in capturing vibration. So when there is a vibration, it bends up and down and hence it creates
an oscillatory voltage output.

Figure 1: PVDF vibration sensor [12].

In our application, we were trying to use it to capture forearm muscle vibration signals, similar to
Electromyography (EMG)[9]. However since this sensor works on the principle of bending, it did not give
any output when it was fastened tightly to hand muscles. So we decided to use our other option which is
Force Sensitive Resistor, which is discussed in more detail in next section.

3 Force Sensitive Resistor

A force-sensing resistor (FSR) is a conductive polymer that has a decrease in its resistance when there is
an increase on the amount of force applied at its surface. The FSR is a patented technology from Interlink
Electronics [10] that was first introduced as sensory device in musical instruments. In our work we are using
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it as a pressure sensor to sense the actuation of hand muscles. These FSR sensors have a force sensitivity
range from 0.1 to 10 N, and an active area (diameter) of 5.08mm. By using a voltage divider configuration
(Figure 2) it is possible to measure the change in resistance of each FSR. The output is described by equation
1.

Vout = Vin(
R2

R2 + RFSR
) (1)

Figure 2: FSR’s voltage divider circuit [8].

3.1 Basic Construction of FSR

Force sensitive Resistor consists of two membranes separated by thin air gap (figure 3).The air gap is
maintained by a spacer adhesive around the perimeter of the two membranes. The space has thickness
about 0.03mm to 0.1mm. It separates the two substrates and holds the sensor together. The 1st membrane
is actually the force sensitive resistor layer, which is printed with carbon based ink. The 2nd membrane
consists of two sets of interdigitated fingers that are electrically distinct. Where each set is connected to
one of the output terminal of the sensor. So when the two substrates are pressed together the microscopic
protrusions from the FSR membrane shorts the interdigitated fingers. Now this is not just like on and off
situation, here at low forces there are only few of the protrusions (figure 4), which are tall, make contact
with the interdigitated fingers and as the force increases more and more points make contacts. As a result
the resistence between the conducting fingers is inversely proportional to the applied force.

3.2 Mathematical Modeling of FSR

The simple mathematical model of FSR can be viewed as a linear mass-spring-damper model(Figure 5). The
model consist of a mass block which is connected to the base via a spring and a damper. The differential
equation of motion of mass would be:

F = macÿ + cẏ + ky (2)

Where F is the force applied at the FSR’s surface, y is FSR’s displacement, mac is the mass of the active
area of the sensor, c is the damping constant and k is the spring constant. It is assumed that the voltage
across the terminals of FSR is proportional to displacement.

V ∝ y (3)

So the force voltage relation can be written as in equation

F = A(macV̈ + cV̇ + kV ) (4)
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Figure 3: Basic FSR construction [10] Figure 4: FSR ink micrograph [10]

Where A is a constant of proportionality. Value of A calculated by experiments is 2.25 × 10−5V/m.
This model is an approximate linear model whose perfomarmance can be quantified by a metric called
fitness performance. This linear model has a fitness performance of around 60-70%. More accurate non
linear models are available [8]: Hammerstein Model, Weiner Model and Hammerstein-Weiner model. These
models include non-linearities at input or output and improve the fitness performance to more than 90%.

Figure 5: FSR’s mass-spring-damper model [8].

4 The Wearable Device

We developed a wearable device (figure 6) using fast prototyping available tools in order to achieve a quickly
deployment. The device is able to communicate wirelessly with a base station (e.g. desktop computer),
giving more freedom for the user when performing some activity. In addition, it was built with an elastic
strap to allow the muscle inflation, making it comfortable to wear when attached directly on the skin or
either on top of clothes. Its purpose is for sensing muscle contraction/extension at the forearm and upper
arm regions.
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Figure 6: Wearable device.
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4.1 Main controller

The device has as its main controller a high level development tool (ArbotiX RoboController, Vanadium
Labs), which allows the addition of other mounting components such as wireless modules. It is based on an
8-bit AVR microcontroller (ATmega644p, Atmel) [11] running in a clock speed of 16MHz. The controller
is responsible to capture the data from the FSRs and send the value corresponding to each sensor to the
stationary machine, which will be able to process the data using some software or analysis tool. It reads
the sensor signal trough an analog-to-digital converter (ADC) pin, which converts the changing voltage to
a number between 0 and 1023. During each iteration, the microcontroller will store all sensors values and
transmit them in a message (string) through the serial pins connected to the wireless module. In order to
get more accurate data, we have set an average calculation that will send the mean value of each sensor after
only a certain number of readings.

4.2 Wireless module

As a great advantage in our device, we have incorporated two wireless serial modules for long range commu-
nication (XBee Series 1, Digi), completely removing the motion restriction of the user, which on the other
hand are present in expensive and sizable wired equipment. This module has a communication range of 10
meters and a maximum data rate of 250kpbs. When the device is powered on, the wireless module starts to
send all data related to the FSRs reading. In order to be able to receive the messages sent by the wearable
device, a USB to serial base unit (XBee Explorer USB, SparkFun) was connected to one of the modules.
This unit can then be hooked up to any laptop or desktop computer, permitting the use of any program for
extracting information of the muscle activity.

4.3 Use of force-sensing resistors

In this project, we have integrated six force-sensing resistors (FSR 400, Interlink Electronics) for sensing the
pressure applied by a chosen group of anterior/posterior muscles at the forearm and upper arm of a human
body. With this resistance-to-voltage conversion method we were able to read the amount of voltage at all
ADC pins of the microcontroller when some pressure was applied on the sensor. The output voltage increases
with increasing force at the FSR surface. From figure 7 we can see the purple curve which corresponds to 10k
of the value of base resistor (R2), gives highest voltage output range of 2.5V . Hence in order to maximize
the force sensitivity range, a 10k ohm resistor was chosen based on the manufacturer data for a standard
FSR with various measuring resistors.

Figure 7: Force vs Vout for various values of R2 [10].
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4.4 Positioning of sensors on muscles

The sensors locations were intentionally chosen to get wide force sensitivity range and to capture the muscle
motion associated with the gestures selected for this project. The wearable device is comprised of two flexible
straps, one for the upper arm and the other for the forearm. Each sensor is attached to the strap with a
double-side tape and positioned directly in the center of the muscle belly, since the deformation in this area
is expected to be larger. For the upper arm strap, there are two fixed FSR sensors which are sensing the
biceps brachii (anterior muscles) and the triceps brachii (posterior muscles). In this case, the device will be
able to detect whenever the user extends or flexes the forearm. Since the forearm contains many muscles
groups that are responsible for controlling the hands and wrist actions, we designated four FSRs to cover this
sensing area. The muscles at this location are: the brachioradialis, flexor carpi ulnaris, flexor carpi radialis,
palmaris longus, extensor digitorum and extensor carpi ulnaris.

5 Pattern Recognition using Neural Networks

Earlier our plan was to use the vibration signal from muscle to identify the muscles activity. The vibration
signals were supposed to be a long time series signals. Hence we thought of using neural networks to identify
and classify pattern in the time series signal output. We were unable to use the vibration sensor and instead
of that we used multiple pressure sensors, however we still planned to use neural network to classify hand
gesture from the output of sensors.

To identify hand gestures first we need to define them. We have one degree of freedom in elbow and 3
degrees of freedom in wrists. Taking into account these degrees of freedom. We defined following gesture
entities:

1. Wrist yaw: Yaw motion of wrist, It is to be noted that wrist can do yaw motion in one direction only

2. Wrist pitch positive: Accounts for pitch motion of wrist, with motion in direction of palm

3. Wrist pitch negative: Also accounts for pitch motion of wrist, with motion in direction opposite to
palm

4. Wrist roll: Accounts for roll motion of pitch, Here also wrist can do roll in one direction. However one
can say that roll can be in two direcitons by keeping the relaxed position in middle of the roll extremes.
Hence we can define the relax position to be one of the extreme

5. Grasp: It accounts for the grasping some object by hand, this is not associated with degrees of freedom
of elbow and wrist

6. Biceps: Bending the arm completely such that wrist almost touch the shoulder, giving full expansion to
biceps

7. Triceps: Stretch arm completely and give stress to tricesps

Here, each gesture entity can have value 1 or 0. In addition to this ’wrist pitch positive’ and ’wrist
pitch negative’ both cannot simultaneously be equal to 1 and also ’biceps’ and ’triceps’ also cannot be
simultaneously equal to 1. Consider an example where user is asked to do this gesture:

[wrist yaw,wrist pitch positive, biceps]

Then the gesture vector can be would be the vector of binary values with 1’s in the place of the entities
which are present in the gesture and zero for other entities. So for the given case the gesture vector would
be:

[1, 1, 0, 0, 0, 1, 0]
T

Similar to the above gesture, there would be 72 total gestures. To train the network we need data. The
data is collected by a matlab program where the system randomly generates one gesture out of the possible
72 gestures. The user is asked by program to adjust his hands according to the generated gesture. When
user become ready then he presses enter and then the program starts collecting 100 samples of the output
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of the sensors. In the execution of code there is a provision to discard the collected data of the current
gesture, incase he feels that he was not able to maintain the gesture for so long and made some error. After
successful collection of data user has a choice to either collect more data or to end the program. This way
we collected a random sequence of input-output samples of gestures.

To classify the actions we used Pattern Recognition App of Neural Network Toolbox of MATLAB. We
chose the network with 1 hidden layer with 50 neurons (Figure 8).

Figure 8: Pictorial depiction of neural network.

One successful system should be able to identify all of the 72 hand gestures distinctively. In our case
the sensor values are not so much consistent. The output of sensors are not much correlated with the hand
gestures. Figure 9 shows the output of sensors for one random sequence of actions.

From the figure we can see that the sensors value are very noisy and only biceps and triceps muscles
sensors are giving prominent and consistent output.

Figure 9: Sensor values samples for a sequence of gesture.

For this case we try to look at a smaller picture where we were considering only biceps and triceps.
So we were considering only 2 dimensional input (Sensor from biceps and triceps only) and output vectors
(considering only biceps and triceps gestures). From figure 10 we can see even for just two gestures, the
network is unable to get train properly. There is just 70% accuracy in classification.

Observing these poor results. We reduce the total number of gestures and active sensors. We chose
sensors on anterior1, anterior2, biceps and triceps and remove the two sensors on posterior muscles. Also the
output is also simplified and now there are just 5 total active gestures as compared to previous 72 gestures.
These gestures are namely:

1. Pitch: Only wrist would be on pitch position, everything else would be relaxed, similar to [0,1,0,0,0,0,0]
of previous notation and is [1,0,0,0] in new notation

2. Grasp pitch: Wrist pitch with a grasp and everything else relaxed, similar to [0,1,0,0,1,0,0] of previous
notation and is [0,1,0,0] with new notation
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Figure 10: Sensor values samples for a sequence of gesture.

3. Flexion: Biceps would be stressed by fully bending the arm from elbow, similar to [0,0,0,0,0,1,0] of
previous notation and it is [0,0,1,0] in new notation

4. Full Extension: Triceps would be stressed by fully stretching the arm from elbow, similar to [0,0,0,0,0,0,1]
of previous notation and it is [0,0,0,1] in new notation

5. Relax: Everything would be relaxed, i.e in zero position, similar to [0,0,0,0,0,0,0] of previous notation
and it is [0,0,0,0] in new notation

The new neural network has now 4 dimensional input vector and 4 dimensional output vector. Apart
from this we also averaged the sensor values over 20 readings, this removes noise from the sensor data and
we get more cleaner and consistent values. Figure 11 shows the plot of new sensor values. From the figure
we can see the data we get is comparatively clean and each sensor has some prominence across different
gestures.

Figure 11: Sensor values samples for sequence of new gestures
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We try training the neural network again with the new set of data. From figure 12 we can see that even
though we have 4 gestures now the accuracy in all 4 cases is more than 90%. Hence using the neural network
on real time and the mapping of gestures with muscles, we can identify the activated muscle at each gesture.

Figure 12: Confusion matrices for training, validation and testing purpose.

6 Human Interface Device(HID)

Different types of devices are used as interface between a user and a machine such as keyboards, mice and
gamepads. With technology advancement new electronic architectures are being explored as well as new
user input methods. Other kinds of user interface can also extend the options for people with disabilities or
that suffered limb loss, connecting them to the digital world. By defining patterns of forearm and upper arm
motion, we were able to use the wearable sensors as a human interface device (HID) for controlling a computer
key press/release as well as the mouse cursor. We developed a program using Processing language to open
the serial port where the second wireless module was connected, and to process the data transmitted by the
main controller. The four new gestures defined in the previous section are used for this experiment. The
upper arm motion had the control of the mouse cursor, which could be moved up or down when extending or
flexing the forearm, respectively. Moreover, the wrist bending was able to command two predefined keyboard
keys. A bend of the wrist with closed hands (Grasp pitch) was characterized as the Enter (return) key, while
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a motion with a flat hand (pitch) was controlling the Backspace key. In order to keep each key pressed, the
user could just hold the gesture for a certain time, where the same could be applied for moving the cursor
up and down.

7 Conclusion and Future works

In our work we demonstrate that the FSR has potential to work as a pressure sensor for upper arm and
forearm muscle pressure sensing. We made a wireless-body-worn device which we are able to transmit muscle
actuation data to the nearby pc in real time. Using this real time data we are able to demonstrate the control
of mouse and some key-press events. Such kind of visual feedback increases the efficciency of rehabilitation
and motivates the patient to do the exercises more, as a result the rehabilitation time decreases significantly.
We also show that neural networks can be used in learning and recognition of gestures. In our present work
we reduced the gestures to very low number so for identification we used ’if-else’ conditions to identify the
gestures. Future work involves the research on identifying the exhaustive set of gestures. In that casae the
use of neural-networks will play significant role as then the dimension of data will increase.

8 Individual Roles

In our work we did most of the things together so with different amount of effort. Following table describes
the distribution of work between the team members.

Work Pratap’s Work (%) Thassyo’s work (%)
Study and testing of PVDF Vibration sensor 100 0
Study and testing of FSR sensor 0 100
Design and development of physical device 20 80
Enabling wireless communication interface 0 100
Data collection, Neural Network Training and Testing 100 0
Design of cursor and keypress control 20 80
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